The Kartézské letadlo nebo kartézský souřadný systém, je dvourozměrná (dokonale plochá) oblast, která obsahuje systém, ve kterém lze body identifikovat podle jejich polohy pomocí uspořádaného páru čísel.
Tato dvojice čísel představuje vzdálenost bodů od dvojice kolmých os. Osy jsou volány Osa X. (vodorovná osa nebo úsečka) a Osa y (svislá nebo svislá osa).
Poloha libovolného bodu je tedy definována dvojicí čísel ve tvaru (x, y). Pak, X je vzdálenost od bodu k ose x, zatímco Y je vzdálenost od bodu k ose y.
Tato letadla se nazývají karteziánská, derivát Cartesia, latinské jméno francouzského filozofa Reného Descarta (který žil mezi koncem 16. století a první polovinou 17. století). Byl to tento filozof, kdo jako první vyvinul plán.
Jako on Osa X. Jako Osa y protahují se nekonečně na obou koncích a protínají se navzájem kolmo (v úhlu 90 stupňů). Tato vlastnost se nazývá ortogonalita.
Bod, kde se protínají obě osy, se nazývá počátek nebo nulový bod. V Osa X., část napravo od počátku je kladná a vlevo je záporná. V Osa y, část nad počátkem je pozitivní a pod ním je záporná.
Souřadnicový systém rozděluje rovinu na čtyři oblasti zvané kvadranty. První kvadrant má pozitivní část osa X a od Osa y.
Druhý kvadrant má ze své strany zápornou část Osa X. a pozitivní z Osa y. Třetí kvadrant má negativní část Osa X. a odmítnutí Osa y. Konečně čtvrtý kvadrant má pozitivní část Osa X. a odmítnutí Osa y.
Uspořádaný pár určuje polohu bodu vztahem k umístění bodu podél Osa X. (první hodnota objednaného páru) a podél Osa y (druhá hodnota objednaného páru).
V uspořádaném páru, například (x, y), se volá první hodnota souřadnice x a druhá hodnota je y souřadnice. The souřadnice x je uveden před y souřadnice.
Protože původ má a souřadnice x 0 a a y souřadnice 0, je zapsán jeho seřazený pár (0,0).
Každý bod na kartézské rovině je spojen s a souřadnice x jeden a jeden y souřadnice pouze. Umístění tohoto bodu na kartézské rovině je konečné.
Jakmile jsou souřadnice bodu (x, y) definovány, neexistuje žádný jiný se stejnými souřadnicemi.
Rovinu souřadnic lze použít k vykreslení bodů a čar grafu. Tento systém umožňuje popsat algebraické vztahy ve vizuálním smyslu.
Pomáhá také vytvářet a interpretovat algebraické koncepty. Jako praktickou aplikaci každodenního života lze zmínit umístění na mapách a kartografických plánech..
Zatím žádné komentáře