A Čtvercový hranol Je to ten, jehož povrch je tvořen dvěma stejnými základnami, které jsou čtyřúhelníky, a čtyřmi bočními plochami, které jsou rovnoběžníky. Mohou být klasifikovány podle úhlu sklonu a tvaru základny.
Hranol je nepravidelné geometrické těleso, které má ploché plochy a tyto uzavírají konečný objem, který je založen na dvou polygonech a bočních plochách, které jsou rovnoběžníky. Podle počtu stran mnohoúhelníků základen mohou být hranoly mimo jiné: trojúhelníkové, čtyřúhelníkové, pětiúhelníkové.
Hranol se čtyřhrannou základnou je polyedrický útvar, který má dvě stejné a rovnoběžné základny a čtyři obdélníky, které jsou bočními plochami, které spojují odpovídající strany obou základen..
Čtyřhranný hranol lze odlišit od ostatních typů hranolů, protože má následující prvky:
Jsou to dva polygony tvořené čtyřmi stranami (čtyřúhelník), které jsou stejné a rovnoběžné.
Celkově má tento typ hranolu šest tváří:
Jsou to ty body, kde se shodují tři tváře hranolu, v tomto případě je celkem 8 vrcholů.
Jsou to segmenty, kde se setkávají dvě tváře hranolu, a to jsou:
Počet hran mnohostěnu lze také vypočítat pomocí Eulerovy věty, pokud je znám počet vrcholů a ploch; pro čtyřúhelníkový hranol se tedy počítá takto:
Počet hran = počet ploch + počet vrcholů - 2.
Počet hran = 6 + 8 - 2.
Počet hran = 12.
Výška čtyřúhelníkového hranolu se měří jako vzdálenost mezi jeho dvěma základnami.
Čtyřhranné hranoly lze klasifikovat podle úhlu sklonu, který může být rovný nebo šikmý:
Mají dvě stejné a rovnoběžné plochy, které jsou základnami hranolu, jejich boční plochy jsou tvořeny čtverci nebo obdélníky, tímto způsobem jsou všechny jejich boční hrany stejné a jejich délka se bude rovnat výšce hranolu.
Celková plocha je určena plochou a obvodem její základny, výškou hranolu:
V = Aboční + 2Azákladna.
Tento typ hranolu se vyznačuje tím, že jeho boční plochy tvoří šikmé vzepětí s bázemi, to znamená, že její boční plochy nejsou kolmé k základně, protože mají stupeň sklonu, který může být menší než nebo větší než 90nebo.
Jeho boční plochy jsou obecně rovnoběžníky s kosočtverečným nebo kosodélníkovým tvarem a mohou mít jednu nebo více obdélníkových ploch. Další charakteristikou těchto hranolů je, že jejich výška se liší od měření jejich bočních hran..
Plocha šikmého čtyřúhelníkového hranolu se vypočítá téměř stejně jako předchozí, přičemž se přidá plocha základen s boční oblastí; jediným rozdílem je způsob výpočtu jeho boční plochy.
Plocha bočnic se vypočítá s boční hranou a obvodem přímé části hranolu, což je právě místo, kde je vytvořen úhel 90nebo s každou ze stran.
NAcelkový = 2 * Plochazákladna + ObvodPan * Okrajboční
Objem všech typů hranolů se vypočítá vynásobením plochy základny výškou:
V = plochazákladna * výška = Ab * h.
Stejným způsobem lze čtyřúhelníkové hranoly klasifikovat podle typu čtyřúhelníku, který tvoří báze (pravidelné a nepravidelné):
Je to jeden, který má jako základnu dva čtverce a jeho boční plochy jsou stejné obdélníky. Jeho osa je ideální linie, která probíhá rovnoběžně s jejími tvářemi a končí ve středu jejích dvou základen..
Chcete-li určit celkovou plochu čtyřúhelníkového hranolu, musí se vypočítat plocha jeho základny a boční plochy tak, aby:
V = Aboční + 2Azákladna.
Kde:
Boční plocha odpovídá ploše obdélníku; a to:
NA boční = Základna * Výška = B * h.
Plocha základny odpovídá ploše čtverce:
NA základna = 2 (boční * Side) = 2Ldva
Chcete-li určit hlasitost, vynásobte plochu základny výškou:
V = A základna * Výška = Ldva* h
Tento typ hranolu se vyznačuje tím, že jeho základny nejsou čtvercové; může mít základny skládající se z nerovných stran a je prezentováno pět případů, kdy:
na. Základny jsou obdélníkové
Jeho povrch je tvořen dvěma obdélníkovými základnami a čtyřmi bočními plochami, které jsou také obdélníky, všechny stejné a rovnoběžné..
K určení jeho celkové plochy se vypočítá každá oblast šesti obdélníků, které ji tvoří, dvě základny, dvě malé boční plochy a dvě velké boční plochy:
Plocha = 2 (a* b + a*h + b*h)
b. Základem jsou diamanty:
Jeho povrch je tvořen dvěma základnami ve tvaru kosočtverce a čtyřmi obdélníky, které jsou bočními plochami, pro výpočet jeho celkové plochy je třeba určit:
Celková plocha tedy je: AT = Aboční + 2Azákladna.
C. Základny jsou kosodélníkové
Jeho povrch je tvořen dvěma základnami ve tvaru kosočtverce a čtyřmi obdélníky, které jsou bočními plochami, je jeho celková plocha dána vztahem:
d. Základny jsou lichoběžníky
Jeho povrch je tvořen dvěma základnami ve tvaru lichoběžníků a čtyřmi obdélníky, které jsou bočními plochami, je jeho celková plocha dána vztahem:
a. Základny jsou lichoběžníky
Jeho povrch je tvořen dvěma základnami ve tvaru lichoběžníku a čtyřmi obdélníky, které jsou bočními plochami, je jeho celková plocha dána vztahem:
Stručně řečeno, k určení plochy jakéhokoli pravidelného čtyřúhelníkového hranolu je nutné vypočítat pouze plochu čtyřúhelníku, což je základna, jeho obvod a výška, kterou hranol bude mít, obecně by jeho vzorec byl být:
Plocha Celkový = 2* Plochazákladna + Obvodzákladna * výška = A = 2Ab + Pb * h.
Pro výpočet objemu pro tyto typy hranolů se používá stejný vzorec, který je:
Objem = Plochazákladna * výška = Ab * h.
Zatím žádné komentáře